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Abstract—Map construction is an integral part of many
location-based services. In this paper, we propose a feedback-
based heuristic map construction algorithm (FHMCA). This is a
lightweight, cooperative, map construction technique which can
accurately capture the unique characteristics of each intersection
and the length of every road without requiring the users to trans-
mit large amounts of data or use GPS. The proposed algorithm
improves the bandwidth and energy efficiency of cooperative
map construction as no detailed maps are needed. However, the
resulting map is still useful for location-based services. Moreover,
our method is applicable when the existing of malicious users,
who report wrong data. We validate the effectiveness of our
solutions through extensive simulation experiments.

Index Terms—encounter, intersection feature, map construc-
tion, subgraph matching, trust.

I. INTRODUCTION

We are entering a mobile computing era where people,

services, and locations are connected with each other. Re-

cently, we have witnessed the explosive growth of local-

based services (LBSs). There are at least two fundamental

issues involved with any LBS: localization of clients, and

construction of a location-specified database. However, the

solutions to both of these issues require a common problem

to be solved first: the construction of the service zone map.

Once this map is constructed, clients can be localized on it,

and service data can also be associated with it.

Cooperative trajectory mapping is an emerging technique

for map construction, which takes advantage of different sen-

sors that are embedded into smartphones to create a map of the

whole region by utilizing users’ trajectories. This type of map

is known as a trajectory map. Trajectory maps are being used

in various applications, such as traffic monitoring [1], public

transportation tracking [2]–[4], and people localization [5]–[7].

Although the GPS-based maps have been widely used, there

are still many limitations with them, such as the problem with

the unavailability of GPS signals in certain environments, like

indoors or in tight urban spaces, high energy consumption [5],

[8], a lot of sampling data for constructing a map, and so

on. As a result, we generally avoid the use of GPS when

building the trajectory map. Instead, the smartphone’s sensors,

the accelerometer and electronic compass, are used to collect

information such as the moving direction and distance between

consecutive sampling times [8]. These data are then transmit-

ted to a central depository via 3G connection, which collects

and processes the readings from multiple users to arrive at a

comprehensive trajectory map.
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Fig. 1. System model. The system normally contains a central server
and several users. Each user periodically reports his trajectory in the form
of intersection and displacement. The access point provides land marks for
intersection matching.

Prior research [5], [8] focuses on constructing a map by

recording the shape of road segments. However, these methods

need to transmit a huge amount of information to the server so

that the accurate shape of road can be preserved, and they are

vulnerable to adversaries who report no-existing trajectories.

In this paper, we consider a new method of map construction

that emphasizes the accuracy of trajectory intersections’ con-

nectivity and their distance, rather than the exact shape of each

road segment; we are interested in navigating from one place

to the other and the total time of commuting from one place

to another. We name the constructed map as an intersection

connectivity map. Although the real path may be a curve,

depicting the real path as a straight line also allows us to move

to the correct destination. Clearly, this problem differs from

the traditional localization problem where accurate physical

locations are usually required.

In this paper, we propose a new map construction algorithm

that is based on encounter information, intersection features,

and the server’s feedback. Our algorithm can be applied in

different types of regions by only using a relatively small

amount of data from users, and our method is resistable to

adversaries through the use of a trust mechanism, since the

reported trajectories can be verified by other users. Moreover,

after a slight adjustment, the proposed algorithm can also be

used in the localization problem. In short, the contributions of

this paper are as follows: 1. To the best of our knowledge, we

are the first to construct a road map without using the shapes of

the road. 2. We design a self-adjusting system that dynamically

changes the sampling policy in different physical conditions.

3. The proposed algorithm requires a much smaller amount of

data transmitted from users. 4. We validate the effectiveness

of our solutions through extensive simulation experiments.
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II. RELATED WORK

We can generally categorize the map construction methods

into two groups: GPS data-based map construction and non-

GPS data-based map construction.

Traditional GPS-data-based map construction methods typ-

ically apply one of the following four data update strategies:

(1) The periodical update strategy [9], [10] is the simplest

location update strategy. All of the mobile users maintain

a synchronous clock, and they report their location data at

a fixed time interval. The system treats users as stationary

between the time intervals. (2) The distance-based update

strategy [11], [12] requires the server to update when a user’s

displacement from the last reported location is greater than

a pre-defined distance threshold. The frequency of location

updates in this strategy is dependent on the speed of each

individual user. (3) The vector-based update strategy uses the

velocity vector of a user to make a location prediction. The

location update is only sent when the difference between the

current location and the predicted location is larger than a pre-

defined distance threshold [13]–[15]. (4) The segment-based

update strategy [16] limits the amount of location updates by

allowing users only to update the location at the end of each

segment. The system of using such an update strategy assumes

that the users can change their movement direction only at a

segment’s end node. The idea of our map construction method

is similar to this update strategy, but it is different in that we

do not use GPS locations.

In paper [8], the authors propose a GPS data-free localiza-

tion system. They allow users’ mobile phones to be embedded

with multiple sensors. Each user periodically reports their tra-

jectories (in the form of moving directions and displacements

from the last reported position) and encounter information

to the server, then the server can build up a map. Other

work by [17], [18] also used similar ideas for cooperative

trajectory mapping. Our method also uses the multiple sensors

embedded in phones. However, the main difference is that

prior works focus on using the sensors to record the shape

of road segments. Our work focuses on recording the unique

features of each intersection.

III. SYSTEM MODEL

Our system requires the following components, as shown

in Fig. 1: (1) A central server. The server collects user data

and uses that information to build the map. Except for the

collected data, the server does not have any domain knowledge

about the map. (2) Mobile clients. We assume that every client

has a mobile phone that is equipped with three sensors: an

accelerometer, an electric compass, and an encounter sensor.

The accelerometer is used for counting the displacement

between any two consecutive sampling times; the compass is

used for measuring the directions of entering and leaving an

intersection; the encounter sensor is used to periodically signal

a nearby users presence as well as record the presence of other

users, which can be accomplished by Bluetooth module. (3)

Land mark (LM). The LM can be any fixed location reference,

such as a WiFi access point. The physical location of the LM

TABLE I
TABLE OF COMMON NOTATIONS

Gi user i reported trajectory (subgraph of G)

C the constructing map at a server

VC the intersection data set at server

EC the edge data set at server

wi user i’s last reported intersection

Deg(vi) node-degree of vi
NV S(vi) location vi’s directly neighboring node set

NES(vi) location vi’s directly connected edge set

Len(vivj) the length of edge vivj
Dir(vi, e/d) the entering/departure direction of vi
vi.LM the associated LM of vi
M,N the number of users and intersections

S speed of a user

is not necessary to be known. The purpose of using LMs is

to provide a unique identity for matching.

At each intersection, a user will report a displacement

from the last intersection to the server. The user can also

report the directions of which they were entering or leaving

an intersection, and the number of paths connected with an

intersection (we also call it as node-degree). However, these

are optional: in Section IV, we discuss at what scenarios a

user should report what kind of data. We assume that a part

of intersections can provide some special LMs: whenever a

user passes these intersections, the device will report the LM

to the server, as well as other data. We assume that users only

move along roads and that the road segments are undirected.

Finally, the intersections mentioned in this paper refer to the

positions whose node-degree is greater than or equal to 3: a
node with degree 2 is just another point on a road segment.

IV. THE CONSTRUCTION OF THE MAP

In this section, we formally introduce how FHMCA per-

forms the map construction. We first formulate the trajectory

matching in map construction by using graph theory. Then, we

propose three basic conditions. Finally, we present FHMCA.

A. Problem formulation and solution overview

The challenge of cooperative map construction is correctly

interpreting every user’s data and merging them together. In

our problem, we emphasize the connectivity of intersections

and the length of road. As a result, the whole map can be

represented by a undirected graph G = (V,E), composed of

nodes (intersections) V = {v1, v2, ...vN} and undirected edges
(road segments) E = {vivj |vi, vj ∈ V }. In this paper we refer

to the whole mapG as the constructed map, and we refer to the

constructing map at the central server as C. As defined, each

edge is associated with two and only two nodes, and we call

these two nodes as the end nodes of this edge. The listing order

of the two end nodes represents the moving direction. For

example, edge vivj means a user moved from intersection vi
to vj . Each intersection may connect with several neighboring

intersections by edges, and we use Deg(vi) to represent the

node-degree of vi. Table I summarizes the notations used.

In the beginning, the server does not have any knowledge

about the map. As users continuously report their trajectory
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information, the server obtains several partial views of the map

G. We use Gi to represent all of the reported data of user i,

and Gi(t) stands for the reported data at time t. We formulate

the map construction problem as finding a partial one-to-one

mapping between nodes/edges in any pair of partial views. We

use several types of reported data to map the location data of

one user to another, and further merge these trajectories and

construct the map. In a nutshell, for a pair of partial view, Gi

and Gj , the resulting graph (merged trajectories), Gi

⋃
Gj , is

the subgraph of G. We use
∫ T

0

⋃M
i=1 Gi(t) dt to represent the

construct map until time T .

Definition 1: Suppose that there are M users. The map

construction problem can be defined as finding M partial

one-to-one mappings such that
∫
∞

0

⋃M
i=1 Gi(t) dt = G. If

we assume that, at time T , the entire road segment has

been passed by users at least one time, the map construction

problem can also be represented as finding M partial one-to-

one mappings such that
⋃M

i=1 Gi = G.

Unlike traditional map construction methods, the users in

our problem do not record the shape of the road but instead

only report their data at each intersection. Therefore, it is clear

that the amount of transmitted data is much less than others.

Consider that a LM may be available at some intersections,

and that each intersection also involves many features, such

as node-degree, path entering and leaving directions, and the

length of the path. We can match the reported intersections

from different users by using these features. Moreover, the

physical encounters of users can also be used in matching

since they preserve both temporal and spatial information.

In our solution, the amount of reported data is based on

the server’s feedback: constructing maps in ambiguous regions

requires more information, and therefore the server should

inform the corresponding users of the needed extra knowledge.

In general, our algorithm consists of two phases: Phase I:

in the beginning, users only provide basic information to the

server, and the server makes its best effort to construct the

map. After awhile, the reported data converges to a temporary

map with several ambiguous regions where more information

is needed. The server then goes into phase two. Phase II:

whenever a user enters into an ambiguous region, the server

will send a special message, requiring extra data from the

user; when the user leaves the region, the server will also

request that user to stop sending the extra data. By these two

phases, the server can gradually gain enough knowledge for

cooperatively constructing an intersection connectivity map.

In the following, we first introduce three basic conditions

and their corresponding algorithms. After that, the general

condition is introduced, followed by the presentation of our

dynamically adjusted algorithm, FHMCA.

B. Basic conditions in map construction

During cooperative map construction, there are two issues

that need to be resolved: (1) for any two users’ reported

data, we need to determine the intersection set of them,

Gi

⋂
Gj , such that Gi and Gj can be correctly connected;

(2) for a piece of new information, we need to determine

whether the incoming data has already been preserved by

the currently under-construction map or not, which means we

need to determine whether Gi(t) ⊆ C. If we can find at least

one combination of unique characteristics of any intersection,

the above two problems will be overcome. In this part, we

introduce three basic conditions which can provide such a

unique feature combinations.

1) The first basic condition (uniqueness-based basic con-

dition): if the node degree of each intersection or the length

of each road segment is unique, the map can be constructed.

However, this condition is exclusively determined by realistic

road connectivity, and therefore the application scenarios are

very limited. The corresponding algorithm for the uniqueness-

based basic condition is given by Algorithm 1.

Algorithm 1 Uniqueness-based Map Construction Algorithm

(UMCA)

1: for Each incoming data Gi(t) = {vi, vkvi} do
2: if Deg(vi) * {Deg(vj)}, vj ∈ NV S(wi) then
3: Add vi into the constructing map C
4: Connect previous location wi with vi in C
5: else
6: if Len(vkvi) * {Len(vjvi)}, vjvi ∈ NES(wi) then
7: Connect wi with vi in C
8: Record current location of user i by wi = vi

2) The second basic condition (LM-based basic condition):

every intersection has a unique LM: the trajectory of a user

can be regarded as a sequence of LMs. Since each road

can be represented by two consecutive intersections, if the

reported LMs of two users contain two consecutively the same

LMs, it means that these two users have passed the same

road in the past; if a common LM is found in two users’

reported data, it means that these two users spatially passed

the same intersection. Based on these facts, the server can

connect all of users’ reported trajectories by matching LMs.

As the reported data also contains the length of displacements

between intersections, the server eventually can construct an

intersection connectivity map. The corresponding algorithm

for the LM-based basic condition is given by Algorithm 2.

Algorithm 2 LM-based Map Construction Algorithm (LMCA)

1: for Each incoming data Gi(t) = {vi, vkvi} do
2: if vi.LM * {vj .LM}, vj ∈ VC then
3: Add vi and vkvi to C
4: Connect vi with wi in C
5: else
6: if vk * NV S(wi)||Len(vkvi) * {Len(vjvi)} where

vjvi ∈ NES(wi) then
7: Connect vi with vk in C
8: Record current location of user i by wi = vi

However, the cost of providing an LM at each intersection

may be too high, and the success of map construction exclu-

sively depends on those local infrastructures which can offer

LMs. We need an alternative way for supplying the unique

information of intersections, and it should be independent from

the local infrastructures.
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3) The third basic condition (direction-based basic condi-

tion): an alternative option for map construction is to use the

directions of entering into and leaving from an intersection.

As there are no absolute location markers at all of the

intersections, we need to consider two cases: (i) matching

the trajectories of any two users who move along the same

path; (ii) connecting the trajectories of any two users whose

trajectories share the same intersection.

If at least one intersection from a user’s trajectory can be

correctly matched with others’ data, the whole trajectory can

be uniquely constructed by using the directions. Moreover, any

user who walks along the same paths can also be uniquely

identified and matched with each other. Suppose that two

users, A and B, respectively pass the same intersection, va,

which has a LM. The road segment walked by A is represented

as vavb, which means A moved from intersection va to the

successive intersection vb. The road segment vavc, passed by

B, means that B passed a road segment from intersection

va to vc. We assume that intersections b and c do not have

LMs. If the departure directions of A and B are the same

A.Dir(va, d) = B.Dir(va, d), we can infer that vb = vc.

Theorem 1: suppose that two users, A and B, have the

same LM respectively at the ith record of A and at the jth

record of B. If the next k departure (or entering) directions

of them are also the same, then the two users walk along the

same paths in this period of time.

Proof: we use vA(p) to represent the location of the pth

intersection reported by A. Since users report the entering

(and leaving) direction at every intersection, the corresponding

intersections of two consecutively reported directions are u-

niquely connected by one and only one path. We use A(i).LM
and B(j).LM to represent the beginning LMs of A and B.

We also have A(i).LM = B(j).LM and A.Dir(vA(i), d) =
B.Dir(vB(j), d). Therefore, vA(i+1) = vB(j+1). Assume that

vA(i+p) = vB(j+p), (p ∈ N, 0 ≤ p < k). Based on the

fact that we can determine one and only one radial from

the same source at one direction, and the fact that every

intersection on the paths of A and B has been reported,

we can get A.Dir(vA(i+p), d) = B.Dir(vB(j+p), d). Hence,
vA(i+p+1) = vB(j+p+1).

Based on Theorem 1, the intersections on the paths passed

by different users at different time can be matched if they have

at least one joint intersection and consecutively equal turning

directions. However, we also need to match the intersections

that are passed by different users along different paths. In

the traditional map construction problem, finding the union

of several trajectories is trivial once some common vertices

or common edges are obtained. However, in our problem,

matching intersections from different data sets is still hard,

even if we can obtain partially matching relations of the sets.

The main reason for such a difference is that preserving the

shapes of the trajectories in traditional methods provides a

strong spatial restriction. In our system, without recording

the shapes of trajectories, the central server may construct

more than one isomorphous map, which all satisfy the known

partial-matching relations. We use encounter information to
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Fig. 2. Parallel and cross encounters.

solve the problem.

There are two types of encounters. When two users are

walking along the same path and encounter with each other,

we call it as a parallel encounter, as shown in Fig. 2; if two

users are walking along different paths and encounter with

each other at an intersection, we name this condition as cross

encounter, as shown in Fig. 2. Different types of encounters

hold different information, as a result they should be treated

separately during intersection matching. Axioms 1 and 2 give

the policies for using these two types of encounters.

Axiom 1: if two users, A and B, have a physical parallel

encounter, edge matching can be applied: the road segment,

where the encounter happened, should match each other; the

end points of the paths should match each other.

Axiom 2: suppose that two users, A andB, have a physical

cross encounter at an intersection. Node matching can be

applied: the intersections, where the encounter happened,

should match with each other. Moreover, the instant speed

before and after the encounter also informs the exclusive-

matching relation: a different entering/leaving direction of

instant speed implies that the last/next reported intersections

of A and B should not be merged together.

Algorithm 3 Direction-based Map Construction Algorithm

(DMCA)

1: for Each incoming data Gi(t) = {vi, vkvi} do
2: if i.LM 6= ∅ then
3: if i.LM * {vj .LM}, vj ∈ NV S(wi) then
4: Add vi, vkvi to C, connect vi with wi

5: else
6: if i.Dir(wi, d) * {Dir(wi, d)}||i.Dir(vi , e) *

{Dir(vi, e)}, vi ∈ C then
7: Connect vi with wi in C
8: else
9: if i.Dir(wi, d) * {Dir(wi, d)} then
10: Add vi, vkvi to C, connect vi with wi in C
11: Record current location of user i by wi = vi
12: for Each incoming encounter records do
13: if The corresponding locations of i and j in C do not follow

Axioms 1 and 2 then
14: Merge the two intersections together

Based on Theorem 1, and Axioms 1 and 2, we find the third

basic condition for map construction, which is more realistic.

Assume that in a close region there are N intersections, and

only n (n ≤ N ) of them can provide an LM. Users are

required to report the displacement from the last intersection,

both entering and leaving directions at each intersection, as

well as encounter information and LMs (if they have any).

The corresponding map construction algorithm of basic

condition three works as follows. At the server, the incoming
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(a) complex structure (b) simple structure

Fig. 3. Various structures of street networks.

data will be matched with the constructing map by using LMs,

directions, and physical encounters. The server first matches

the reported trajectories with the constructing map. If the

server cannot match the incoming intersection with the existing

ones, a new intersection will be added in the constructing

map. Then, the server will use encounter information to adjust

the constructing map by merging reduplicate intersections:

if the virtual identities of the encounter-related intersections

are different, merge the virtual identities into a unique one.

We name the corresponding algorithm, under the third basic

condition, as the direction-based Map Construction Algorithm

(DMCA). The details of DMCA are given by Algorithm 3.

C. Feedback-based heuristic map construction algorithm

The complexity of road structures can vary greatly. Fig. 3

gives us two examples. The road structure of Fig. 3(a) and

the shape of each road segment is complex, but such structure

complexity also provides the uniqueness of the length of the

road segment; Fig. 3(b) only has a very simple structure,

however, the intersections or road segments are very common

as well as similar to each other, which makes trajectory

matching much harder than in Fig. 3(a).

Considering that the structure complexity of a map is a

regional feature, we can regard the whole map as the compo-

sition and combination of several sub-maps whose structures

are simpler and coherent. We name these sub-maps as cells.

We use C to represent the cells,
⋃k

i=1 Ci = G.

Typical map construction methods do not have an ad-

justment policy for different regional structure complexities.

Hence, their location update strategy at the user side is un-

changeable. For guaranteeing the quality of the service, most

of them apply a uniform strategy that is suitable for a region

with a complex structure. The obvious weakness of using a

uniform update strategy is the superfluous information. If the

central server can inform users of how to change their update

strategy at different regions, the cost of map construction can

be definitely reduced. However, in our problem, the server

does not have such a general knowledge about the map.

The amount of information used in three basic conditions is

different: direction-based map construction requires the largest

amount of information; the length of edges and LMs are used

in all of the three conditions. Moreover, the construction time

under these three conditions is also different. The LM-based

map construction method requires the least time, while the

direction-based method costs the most. We use the different

converging time of the three basic conditions to create a new

map construction method that can appropriately use data.

Considering that it is not necessary to match every user’s

reported data in the map construction phase, we can just let

users simply report the node degree of intersections and the

length of paths in the beginning, as well as the LM if it is

available. Gradually, the cells in basic conditions one and two

can be built. The server can notify the users who are (not)

in the constructed cells to begin (stop) reporting the entering

and leaving directions at intersections. Hence, the cells can

be gradually connected with each other. Since the notification

works as feedback, which reveals the difficulty of construction

in users’ nearby regions, we name the above map construc-

tion process as a feedback-based heuristic map construction

algorithm (FHMCA), which is shown by Algorithm. 4.

Algorithm 4 Feedback-based heuristic Map Construction Al-

gorithm (FHMCA)

1: Setup timer, system initialization
2: while Timer is valid do
3: for Each incoming data Gi(t) do
4: if i.LM 6= ∅ then
5: Apply LMCA on the constructing map C
6: else
7: Apply UMCA on C
8: while Time out do
9: for Each incoming data Gi(t) do
10: if Dir(vi, e) 6= ∅ or Dir(vi, d) 6= ∅ then
11: Apply DMCA on C
12: else
13: Localize user’s position (wi = vi) on C
14: if One of the neighbors of current intersection is not fully

constructed then
15: Inform user to begin to report directions
16: else
17: Inform user to stop reporting directions

V. LOCALIZATION ON THE CONSTRUCTED MAP

The constructed map of FHMCA can be used in localiza-

tion. Here, we introduce a new localization method by using a

FHMCA constructed map, which can efficiently localize users

and costs less amounts of data transmissions. This localization

method shares the same idea as FHMCA: if users are located at

unique regions, the server will inform them, and the users only

need to report simple version of the data; as in common region,

the server will require the clients to submit extra data. In

general, the proposed localization method uses the encounter,

intersection features, and graph matching. In our localization

method, a user’s position can be represented as being at an

intersection or at the segment between two intersections.

A. Intersection-based localization

After the intersections connectivity map is constructed, the

server can localize the users by associating them with the last

passed intersection. If some applications need the users’ real-

time positions, the server can estimate them by estimating the

departure from the last reported intersection, and the server

only needs to capture two events: users’ average moving

speeds, and last departed intersection. The average speed can

be obtained easily since the server already has both the length

of road segments and the time-stamps of the reported data.
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Fig. 4. 2-hop information for searching initial positions.

The idea of intersection map-based localization is that

localization at a unique intersection requires less information

than that at general intersection. As the server already known

the uniqueness information of every intersection, we just let

the server look ahead at the constructed map to check the

uniqueness of nearby intersections, and then inform users

when and where to report what kind of information.

For the applications, which do not require a user’s real-

time location, the localization can be achieved as follows.

After receiving data, the server first updates the user’s location.

Then, the server checks the uniqueness of the current inter-

section’s neighbors. If these neighbors can be distinguished by

the node-degrees, the length of the displacement, or the LMs,

the server informs the user to report regular data; however,

if at least one pair of neighbors are similar, the server has

to require the user to report leaving directions. As for the

applications required the real-time locations, the users need to

report leaving directions at each intersection. The server can

estimate the positions of users by using the average speed.

B. Fast position initialization

In our proposed localization method, we do not apply any

location-determined device, which can provide exact locations.

As a result, there may be a long time gap from the moment a

new user joined the system to the moment of being localized;

if the surrounding region of users’ entering positions is unique,

the users can be quickly localized. For example, if all of the

intersections near the entering positions have LMs, or if the

lengths of paths are all different in this region, the time gap

will be short. However, if the surrounding regions are very

common, the server will not be able to find out the initial

locations, even if the users report turning directions.

The encounter information can be used to solve the time

gap problem involved with position initialization: if new

users come across some others users, who have already been

localized, the new users can be localized by using the locations

of the old users. However, if both of them have not been

localized, initial localization is still a problem.

One straightforward solution is to use graph matching on

a single user’s trajectory. If the user’s trajectory in a period

of time can be uniquely identified, the initial location will be

found. However, the length of the time gap from using this

method is determined by many factors, such as the speed of

the user or the uniqueness of the region.

In order to quickly find the initial position, we propose the

second solution. We notice that when two users encounter each

other at an intersection, the central server can obtain partial

2-hop information of this intersection. Fig. 4 is an example.

When users A and B meet each other at an intersection, the

server can know the node degree of parts of its neighbor

intersections and the distance to them. Moreover, if both of the

users also report the entering and leaving directions at each

intersection, the server can obtain more information, which

can increase the chance of having unique features: the server

may apply some graph matching algorithm on this partial

subgraph and the constructed map. If the server exclusively

finds one matching region from the constructed map, then both

of the users are localized. Otherwise, the server will continue

to add the two users’ reported trajectories to the subgraph

until finding only one matching result or one of them can

be localized, such as encountering an old user or passing an

intersection with an LM. Compared to the first solution, which

only uses the data from single user, the growing speed of the

subgraph in solution two is much faster; as a result, the time

gap of initialization will become shorter.

VI. DATA VERIFICATION

There are two key features of cooperative trajectory map-

ping: (1) when users encounter with each other, they indepen-

dently report encountering to the server; (2) any path can be

passed by any user. The intuition behind our data verification

is to make use of these features to detect adversaries1.

Consider that an adversary that is physically at intersection

α (locα) but reports that he is at locβ . Since the adversary is

not at locβ , he cannot determine whether another user is at

locβ . The probability of guessing correctly is very small; we

do not consider it. If an honest user is at locβ , the central server

can detect an inconsistency: the absent of an encounter, which

ought to happen from the reported trajectories. The honest

user hence acts like a witness that can be used to identify an

adversary. We assign an honest degree to each user, if the sever

find an inconsistency, both involved users will get a penalty.

Over time, an adversary will be associated with more penalties,

and the server will not use any data from the low-honest users.

Another inconsistency can be found if lots of high-honest users

can not pass a path but some less trustable users can. It is very

possible that the less trust users lie.

VII. PERFORMANCE ANALYSIS AND EVALUATION

In this section, we first describe our simulation setup and

evaluation metrics. Then, the simulation results and analysis

are presented.

A. Experiment setup and evaluation metric

We use Matlab to perform our simulations. The simulation

setup is as follows: we first synthetically generate a grid

map and set the distance between neighborhood paths equally.

Then, we randomly generate the initial positions of users

and the speed, which varies from 1 to 10 distance units per

time unit. The speed follows a uniform distribution. Then,

we generate the trajectories of users. Whenever a user passes

an intersection, the server may get all of or parts of the

1We assume that the number of honest users are greater than adversaries.
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Fig. 5. The number of users vs. false negative rate and false positive rate.

follows: node degree, displacement from the last reported

location, encounter, instant moving direction, LMs, entering or

departure direction from an intersection. Exactly which data

is used is determined by the simulation algorithm.

In this simulation, we do not consider the effects of noise.

Normally, we use the 10× 10 or 5× 5 grid maps considering

the computing time. For the consideration of generality, each

data point in our graphs is the average result.

The metrics we applied are False Positive Rate (FPR) and

False Negative Rate (FNR): FPR = FP
FP+TN

, FNR =
FN

TP+FN
where FP is the number of false positive, FN means

false negative, TP stands for true positive, and TN represents

true negative. We use FPR and FNR to represent the false

connectivity between intersections. Consider that users may

not report LMs at some intersections. During the map con-

struction, the central server needs to provide unique identities

for them. When calculating the error, to each identity in the

constructed map, we first find its corresponding identity in the

real intersection map, then compute the connectivity error.

B. Simulation results

In simulation, we compare five different algorithms:

LM-based algorithm. We assume that all of the intersec-

tions can provide unique LMs, and therefore, the accuracy of
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Fig. 6. The number of LMs vs. false negative rate and false positive rate.

this algorithm is the highest. We use the result of the LM-

based algorithm as a standard.

Node degree only algorithm. Normally, if the node degree

or the length of the road segment is unique, the server can

correctly localize the users and build the map. However,

since the grid map is the most difficult condition for map

construction, and most of the intersections share the same node

degree and the length of road segment, the node degree only

algorithm does not suit our simulated map well.

Algorithm by applying LM and node degree. We assume

that some intersections can provide LMs to users, while others

cannot. Consider the accuracy of using LMs. The algorithm

gives a higher priority to LM information.

Algorithm by applying LM, node degree, and encounter.

This algorithm tries to apply encounter information to improve

the performance of the LM and node degree-based algorithm.

We use the encounter record to find out whether two different

intersections in the constructing map should be merged, or

whether one intersection should be split into two.

Direction-based algorithm. The direction-based algorithm

applies direction, LM, node degree, and encounters. This

algorithm also uses encounter information to merge and split

intersections in a constructing map. However, the converging

time of this algorithm is long since the algorithm requires users
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Fig. 7. The impact on FNR when using different data sequences.

to encounter with others at each intersection at least one time.

Consider that our FHMCA takes more time to converge than

the direction-based algorithm and that the accuracy of both the

FHMCA and the direction-based algorithm are similar, we do

not draw the FHMCA curves. But, the comparison of these

two algorithms is presented later.

The first tested factor is the number of users. We test FPR

and FNR when the number of users are 5, 10, and 15. The
observation time is set as 2000 time units, and the encounter’

sensor range is 1. We randomly select 50% of the intersections

to have LMs. The initial positions of users are randomly

deployed. Fig. 5 shows our simulation results.

The second tested factor is the density of LMs. We test

FPR and FNR when the density of LMs are 25%, 50%, and

75%. The observation time is set as 1000 time units, and the

encounter’ sensor range is 1. The number of users is 5, and
their initial positions are also randomly deployed. Fig. 6 shows

our simulation results. From the figures we can find that the

number of LMs has a huge impact on both FPR and FNR.

Moreover, the converge speed is faster in high LMs-density.

Figs. 7 and 8 show the relationship between the sequence

of applying varying data and the accuracy of the constructed

map. In Figs. 7(a) and 8(a), we let the server only use the node

degree information at the very beginning, and then, direction

information is applied; however, in Figs. 7(b) and 8(b), we let

the server first use the direction information followed by using

node degree information. From the simulation results, we can

see that directly using direction information at the beginning

can cause a lower FPR while using direction information after

others can result in a lower FNR.

Our last tested factor is the time for transforming the

data types. From Figs. 7 and 8, we advert that the time of

transforming data types affects more the method that used the

node degree first. Moreover, at the beginning of changing the

data types, the accuracy may fluctuate for a short time, and

then, the curve begins to converge again.

VIII. CONCLUSION

In this paper, we consider the problem of map construc-

tion in cooperative trajectory mapping. We propose a server

feedback-based map construction algorithm, which can gradu-

ally construct a map without using GPS data. Considering that

there are multiple kinds of sensor data available for the server

at different times and that different combinations of them may
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Fig. 8. The impact on FPR when using different data sequences.

have different results, we use several algorithms to maximally

use that data. Extensive simulations and comparisons are

made. Our future work intends to test our algorithm with real

maps. In a real-world map, the features of each intersection

may be more unique than our simulation grid maps.
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